Biology Online is a Biology blog and dictionary site that provides up to date articles on the latest developments in biological science. The Biology Online Dictionary is a completely free and open dictionary with over 60,000 biology terms. It uses the wiki concept, so that anyone can make a contribution.

Category: Evolution

A New Theory on the Origin of Animal Multicellularity

Multicellular life, purportedly, started around 600 million years ago. From single-celled, certain organisms eventually evolved into the more complex multicellular forms. Several theories arise trying to explain how multi-celled animals came about. As of this time, there remains no consensus as to the origin of animal multicellularity. Recently, another theory emerged and it apparently challenges the widely held notion on the origin of animal multicellularity.

On the origin of animal multicellularity

Ediacaran biota
An imagined Ediacaran biota on the seafloor Credit: Ryan Somma (by Flickr, CC BY-SA 2.0)

In particular,multicellularity is defined as a condition or state of having or being comprised of many cells, each seemingly performing distinct function(s). One of the popular theories held is the “Gastraea Theory of Haeckel“.  Accordingly, multicellularity first occurred when cells of the same species group together in a blastula-like colony. In due time, certain cells in the colony underwent cell differentiation.[1] Still, this theory seems inadequate to explain the origin of multicellularity.

What scientists agree on is that, in essence, multicellularity occurred several times in biological history. In Neoproterozoic era, particularly in the Ediacaran period (around 600 million years ago), the first multicellular form emerged. Also in this period, sponge-like organisms evolved based on the recovered fossils of Ediacaran biota. Correspondingly, they were presumed to be the first animals.[2]  They resemble the sponges (choanocytes) with size ranging from 1 cm to less than 1m.[3]

The earliest ancestors of multi-celled animals could likely be sponge-like because a sponge has no organs but an assemblage of different cells with specialized functions.

sponge- origin of animal multicellularity
Sponge biodiversity and morphotypes: the yellow tube sponge (Aplysina fistularis), the purple vase sponge (Niphates digitalis), the red encrusting sponge (Spiratrella coccinea) and the gray rope sponge (Callyspongia sp.) in Caribbean Sea, Cayman Islands. Credit: Twilight Zone Expedition Team 2007, NOAA-OE. (Creative Commons Attribution 2.0)

New theory

In contrast to these popular tenets, a new theory on the origin of multicellularity in animals surfaced. Accordingly, scientists at the University of Queensland claim that the present-day multi-celled animals might have evolved from primitive multicellular organisms that were probably not like the modern-day sponges. As a matter of fact, they, too, were surprised at the outcome of their analyses as their findings apparently contradict the widely held notion on animal multicellularity.  

According to Professor Bernie  Degnan [4], “We’ve found that the first multicellular animals probably weren’t like the modern-day sponge cells, but were more like a collection of convertible cells.”

Moreover, he said: “The great-great-great-grandmother of all cells in the animal kingdom, so to speak, was probably quite similar to a stem cell. This is somewhat intuitive as, compared to plants and fungi, animals have many more cell types, used in very different ways — from neurons to muscles — and cell-flexibility has been critical to animal evolution from the start.”

Accordingly, they based their theory on their comparisons on the transcriptomes, fates and behaviors of different sponge cell types. Surprisingly, they found out that the transcriptome of sponge choanocytes did not match the transcriptomes of choanoflagellates. Furthermore, the results point towards pluripotency (i.e. the tendency of a cell to develop into more than one cell type).

Also, they found that the choanocytes in the sponge Amphimedon queenslandica could readily transdifferentiate into archaeocytes. The archaocytes, likewise, could differentiate into other cell types.

Concluding remark

Rather than steering towards the anticipated homology of sponge choanocytes and choanoflagellates, their results apparently swerved away from it and took a different direction.

Correspondingly, their analyses indicate that the origin of animal multicellularity might have been a primitive multicellular animal. And as has been noted, these animals could transition between multiple states just as the modern-day stem cells can do.[5]

— written by Maria Victoria Gonzaga

References:

1 Biology-Online Editors. (2014, May 12). Living thing. Retrieved from Biology-online.org website: [Link]

2 Biology-Online Editors. (2014, May 12). Evolution. Retrieved from Biology-online.org website: [Link]

3 The History of Animal Evolution. (2000, January 1). Retrieved from Link

4 University of Queensland. (2019, June 12). How multi-celled animals developed: Evolutionary discovery to rewrite textbooks. ScienceDaily. Retrieved June 20, 2019 from [Link]

5 Shunsuke Sogabe, William L. Hatleberg, Kevin M. Kocot, Tahsha E. Say, Daniel Stoupin, Kathrein E. Roper, Selene L. Fernandez-Valverde, Sandie M. Degnan, Bernard M. Degnan. Pluripotency and the origin of animal multicellularityNature, 2019; DOI: 10.1038/s41586-019-1290-4

RNA-DNA World Hypothesis?

How did life start as we know it? In the scientific community, the RNA World Hypothesis has many adherents. Many believed that life came about as a result of the existence of the simplest molecule, such as RNA. Perceptibly, RNA shows signs of somewhat being “alive” — at least in the sense that it carries a genetic code and capable of self-replicating. In essence, RNA could be the earliest biomolecule. Subsequently, other organic molecules came about. However, a new hypothesis is gaining a grip. Accordingly, RNA and its close relative – DNA – might have existed side by side during the primordial times, even before life began.

RNA World Hypothesis

RNA world hypothesis
According to RNA World Hyopothesis, RNA dominated the ancient Earth and served as descendants to life. [Photo: public domain, from Pxhere]

In RNA world hypothesis, primitive life is presumably RNA-based. This assumption arose from the notion that RNA could act both as a genetic material and as a catalyst. In due time, primitive RNA-based entities have transitioned into compartmentalized life forms (in the form of cells) for over many millions of years. Possibly, the RNA-based life dominated the primitive Earth and then served as the descendant of the present-day living organisms.1 Carl Woese, an American microbiologist and biophysicist, is hailed as the originator of the RNA World hypothesis. Accordingly, he conjectured in 1967 that the earliest self-replicating life entities could have relied on RNA.2

Theory on the Origin of RNA

How RNA emerged or came about still puzzles scientists. Where did RNA come from? Did it come from the Earth’s more nascent, rudimentary units?or perhaps, the building blocks for RNA came down to Earth from the outer space? According to scientists, RNA seemingly came from, and synthesized in, the asteroids from the outer space. Apparently, they reached the Earth through meteorites. NASA reported that they found RNA and DNA nucleobases (e.g. adenine, guanine) in meteorites. These could have led to the spontaneous creation of RNA and DNA on Earth.3 In March 2015, researchers reported that pyrimidines uracil, cytosine, and thymine formed in their laboratory under outer space conditions and using precursors such as compounds present in meteorites.4

RNA-DNA world?

In essence, DNA is a more complex compound than RNA. While RNA occurs as a single strand, DNA exists as two strands that typically wound in a helix. Similar to RNA, DNA consists of multiple nucleotides covalently bonded by 3′, 5′ phosphodiester linkages. Each nucleotide, in turn, contains phosphoric acid, a deoxyribose sugar (5-carbon), and a nucleobase (particularly, cytosineguanine, adenine, and thymine). Thymine is a distinctive structural feature of DNA. In DNA, thymine takes the place of uracil. Having discovered that these building blocks could form under pre-biotic conditions causes scientists to rethink the origin of life.

A research team reported how chains of nucleic acids could form in a pre-biotic environment and how RNA could easily turn into DNA components even without the assistance of enzymes. Ramanarayanan Krishnamurthy, one of the researchers, said, “These new findings suggest that it may not be reasonable for chemists to be so heavily guided by the RNA World hypothesis in investigating the origins of life on Earth.”5

They surmised that the primitive Earth is no pure RNA. DNA might have existed side by side with RNA and it probably even competed for supremacy, until the DNA system eventually reigned over.

They published their report in Nature.6

— written by Maria Victoria Gonzaga

References:

1  Biology-Online Editors. (2014, May 12). Ribonucleic acid. Retrieved from Biology-online.org website: [Link]

2  Woese, C. (1967). The Genetic Code: the Molecular basis for Genetic Expression. New York: Harper & Row.

3  NASA – NASA Researchers: DNA Building Blocks Can Be Made in Space. (2011, January 1). Retrieved NASA website: [Link

4 Marlaire, R. (3 March 2015). “NASA Ames Reproduces the Building Blocks of Life in Laboratory”. Retrieved from NASA website: [Link]

5 McRae, M. (2019). DNA And RNA May Have Existed Together Before Life Began on Earth. Retrieved April 6, 2019, from ScienceAlert website: [Link]

6 Xu, J., Green, N. J., Gibard, C., Krishnamurthy, R., & Sutherland, J. D. (2019). Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nature Chemistry. [Link]

On Mate Selection Evolution: Are intelligent males more attractive?

A study published in Science on January 11 seems to be the first to lay empirical evidence that concur with Charles Darwin’s hypothesis: … that mate selection might have contributed to the evolution of intelligence or cognitive abilities. Scientists from China and the Netherlands collaborated in a study on budgerigars, Melopsittacus undulatus. Based on what they observed, problem-solving skills apparently increased the attractiveness of male birds. Accordingly, female birds chose to spend more time with male birds that appear to be smarter.[1]

 

 

Darwin on mate selection

In animal kingdom, mate selection is a real deal. One of the generalized traits that distinguish the animal from the plant is the former’s tendency to select a mate. Animals, including humans, have their set of preferences when it comes to choosing a mate. While plants chiefly let nature do the “selection” for them, animals tend to seek a potential mate by themselves. And when they find a suitable mate of their choice, they often make a conscientious effort to succeed at coupling. In particular, males engage first in a courtship ritual, for example, by wooing a female with a song, a dance, or by a display of beauty or prowess.

 

Sexual selection evolved as one of the means of natural selection. A male, for instance, chooses a female to mate with, and, if need be, may tenaciously compete against other males to stack the odds in his favor. Charles Darwin’s long-standing theories on sexual selection are still relevant to this day. Darwin believed that sexual selection had a key role in how humans evolved and diverged into distinct human populations.[2] In view of that, sexual selection could have contributed as to how intelligence evolved.

 

 

 

Intelligent males, more attractive

 

budgerigars on mate selection
Female budgerigars (also called parakeets or budgies) apparently prefer smarter mates, according to a study. This finding seems to support Charles Darwin theory on mate selection.

 

Many studies on birds revolved around the notion that female birds favor male birds with vibrant feathers or stylish songs. A recent study claims that intelligence is preferred over such fancy features and skills.

 

In the first experiment conducted by Chen and colleagues[3], small budgerigars (Australian parrots) were observed inside their cages to test the hypothesis that intelligence might affect mate selection. To do that, they allowed each female budgerigars to choose among a pair of similarly-looking male budgerigars to interact with. The chosen males were called preferred whereas those that were not were referred to as the less-preferred. Next, they trained the less-preferred males into learning a skill that opens closed lids or boxes. They, then, allowed the female budgerigar to observe the less-preferred male demonstrate the skill. Consequently, almost all of the females changed their preference. They chose the less-preferred males over the initially preferred males.

 

To test if this preference was social rather than sexual, they conducted a second experiment with a similar experimental design but this time a female budgerigar was exposed to two females (instead of males). The results showed that none of the female budgerigars changed their preferences. [1, 3] Based on these experiments, the researchers concluded that the demonstration of cognitive skills altered mate preference but not necessarily social preference.

 

Video of the animal model, male budgerigar that learned a problem-solving skill that seemingly increased its attractiveness to females. [Credit: Hedwig Pöllöläinen].

 

 

Conclusion

Why did mate selection evolved? The answer could be associated with the species survival or longevity. Individuals must be able to stay in the mate selection pool, if not on top of it. In general, males deemed as superior or “preferred” will gain higher chances at mating, and thereby will have better opportunities at transmitting their genes as they dominate the access to fertile females. Females, on the other hand, gain an upper hand from the mate selection by being able to choose the seemingly finest among the rest. Females must choose. That is because they have a generally limited reproductive opportunity to give life to. Moreover, the energy that a female invests in producing an offspring is so great that it has to be worth it.

 

 

— written by Maria Victoria Gonzaga

 

 

References:

 

1  Chen, J., Zou, Y., Sun, Y.-H., & ten Cate, C. (2019). Problem-solving males become more attractive to female budgerigars. Science363(6423), 166–167. https://doi.org/10.1126/science.aau8181

 

2  Jones, A. G., & Ratterman, N. L. (2009). Mate choice and sexual selection: What have we learned since Darwin? Proceedings of the National Academy of Sciences106(Supplement_1), 10001–10008. https://doi.org/10.1073/pnas.0901129106

 

3  GrrlScientist. (2019, January 11). Problem-Solving Budgies Make More Attractive Mates. Forbes. Retrieved from https://www.forbes.com/sites/grrlscientist/2019/01/10/problem-solving-budgies-make-more-attractive-mates/#515f24d66407

 

Blindness – Evolutionary regression? Maybe not!

The recent Netflix’s hit flick, Bird Box, surely startled the viewers with the thrilling scenarios revolving around the precept that once seen, expect an abrupt ferocious death. Given that, Malorie (the protagonist portrayed by Sandra Bullock) blindfolded herself and the two children, and embarked down the perilous river to seek a safer refuge. (N.B. If you have not seen it yet, you probably need to pause to dodge the spoilers ahead.) Ultimately, they reached the haven, which was revealed to be an old school for the blind. The surviving community was a population of primarily blind, and as such, immune, people. By and large, this film emanated a message to me that blindness should not be taken as an utter handicap but a trait that tenders a likely evolutionary edge.

 

 

 

Blindness defined

Blindness is a complete, or a nearly complete, lack of vision. Basically, two major forms exist. A partial blindness means a very limited vision. In contrast, a complete blindness means a total lack of vision — not seeing anything, even light.1

 

 

 

Causes of blindness

Some of the common causes of blindness include eye accidents or injuries, diabetes, glaucoma, macular degeneration, blocked blood vessels, retrolental fibroplasia, lazy eye, optic neuritis, stroke, retinitis pigmentosa, optic glioma, and retinoblastoma.1

 

Congenital blindness refers to a condition wherein a person has been blind since birth. In fact, several instances of infant blindness are due to inherited eye diseases, such as cataracts, glaucoma, and certain eye malformations. In this case, genetic factors play a role. Retinitis pigmentosa, for example, is a hereditary condition. The retinal cells slowly disintegrate and ultimately leads to an incurable blindness later in life. Albinism also leads to vision loss in which, at times, reaches the category of “legally blind“.

 

The mapping of the human genome led to the identification of certain genetic causes of blindness. Scientists recently identified hundreds of new genes associated with blindness and other vision disorders. Bret Moore and colleagues found 261 new genes linked to eye diseases.2 Furthermore, they said that these newly-identified genes from mouse models likely have an analogous counterpart gene in humans. Thus, their findings could shed light in identifying the genes causing blindness in humans.

 

 

Eye evolution

Humans evolved eyes that enabled sight or vision. About 500 million years ago, the earliest predecessors had eyes that could detect light from the dark. This early eye, called an “eyespot“, could sense ambient brightness (but not shapes), which sufficiently helped orient single-celled organism (e.g. Euglena) to circadian rhythm and photoperiodism, and of course to food.3

 

Soon, the eyespot evolved into a rather complex light-detecting structure, such as that found in flatworms. Their eyes could detect light direction. Also, their eyes enabled them to seek a better spot to hide from predators. As light was able to penetrate the deep seas, organisms such as Nautilus evolved pinhole eye. A small opening on it allowed only a thin pin of light to enter.  This dramatically improved resolution and directional sensing.3

 

The pinhole eye evolved lens that regulated the degree of convergence or divergence of the transmitted rays. Furthermore, the lens helped distinguish spatial distance between the organism and the objects in its environment.3

 

A modern human eye has become more intricate by the presence of other eye structures. For instance, a transparent layer called cornea covered the opening (pupil) of the eye. This caused the inside of the eye to contain transparent body fluid called  vitreous humor. The iris is the colored part near the pupil. The light-sensitive membrane, retina, contains the photoreceptor cells, i.e. the rods and the cones. Apparently, the evolution of the human eye concurred with the evolution of the visual cortex of the human brain.3

eye structure
Illustration of the eye with labeled parts.
[Image credit: National Eye Institute, National Institutes of Health.]
 

 

 

 

Blindness – an evolutionary regression or a gain?

blindness eyes
Is blindness an evolutionary regression?
[Photo by omar alnahi from Pexels]
 

 

Should blindness be considered an evolutionary regression or an evolutionary gain? Blind beetle species that live in light-less caves, in the underground aquifers of Western Australia and the eyeless Mexican cave fish are some of the animals that once had a sight but lost it over millions of years.

 

Simon Tierney from the University of Adelaide offered an explanation to this seemingly evolutionary regression.4  Accordingly, the loss of sight in the cave fish species apparently led to the evolution of increased number of taste buds. In particular, pleiotropy might explain this manifestation. A pleiotropic gene, in particular, controls multiple (and possibly unrelated) phenotypic traits. In this case, the gene responsible for the eye loss might have also caused the increased number of taste buds. The eyesight may not be imperative in a light-deprived habitat; however, an amplified number of taste buds for an improved sense of taste is. Douglas Futuyma of the State University of New York at Stony Brook explained: 4

 

“So the argument is these mutations are actually advantageous to the organism because the trade off for getting rid of the eye is enhancing the fish’s tastebuds. It really looks like these evolutionary regressions are not a violation of Darwin’s idea at all. It’s just a more subtle expression of Darwin’s idea of natural selection.”

 

 

 

Heightened senses

In 2017, a research team posited that blind people do have enhanced abilities in their other senses. To prove this, they brain scanned blind participants in a magnetic resonance imaging (MRI) scanner. Accordingly, the scans revealed heightened senses of hearing, smell, and touch among blind participants as opposed to the participants who were not blind. Moreover, they found that blind people had enhanced memory and language abilities. Lotfi Merabet of the Laboratory for Visual Neuroplasticity at Schepens Eye Research Institute of Massachusetts Eye and Ear said:5

 

“Even in the case of being profoundly blind, the brain rewires itself in a manner to use the information at its disposal so that it can interact with the environment in a more effective manner.”

 

 

 

Conclusion

As the popular maxim goes, the eyes are the windows to the soul. In the presence of light, our eyes can perceive all the seemingly playful colors and spatiality that surround us. At times, a simple stare is all it takes to convey what we could have said in words. Despite the loss of sight in some of our co-specifics, their brain configured into an avant-garde stratagem that enabled them to do most of what a seeing person could. Based on what the researchers observed, they had enhanced interconnections in their brain that seemed to compensate for their lack of sight.  Hence, blindness appears not as an evolutionary regression but probably a shift of path forward the evolutionary line.

 

 

— written by Maria Victoria Gonzaga

 

 

References:

 

1 Blindness and vision loss: MedlinePlus Medical Encyclopedia. (2019, January 1). Retrieved from https://medlineplus.gov/ency/article/003040.htm

 

2 University of California – Davis. (2018, December 21). 300 blind mice uncover genetic causes of eye disease. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2018/12/181221142516.htm

 

3 TED-Ed. (2015, January 8). YouTube. YouTube. Retrieved from https://www.youtube.com/watch?v=qrKZBh8BL_U

 

4 How does evolution explain animals losing vision? (2015, March 18). Abc.Net.Au. Retrieved from https://doi.org/http://abc.net.au/science/articles/2015/03/18/4192819.htm

 

5 Miller, S. G. (2017, March 22). Why Other Senses May Be Heightened in Blind People. Retrieved from https://www.livescience.com/58373-blindness-heightened-senses.html

 

SELFISH GENE – selfish to persist

What is a selfish gene? A selfish gene is not a gene that makes an individual selfish. In fact, it may even be involved in the demonstration of a selfless act, a mark of altruism. Selfish gene elements (or selfish DNA) are nucleotide sequences that make copies of itself within the genome. They are regarded as unhelpful as they are of no use since they do not make a protein product. Sometimes, they may even cause harm. However, selfish genes have a vital impact on the survival of the species as a whole.

 

 

 

Selfish gene as a concept in evolution

Richard Dawkin coined the term selfish gene. He also proposed a gene-centric view of evolution in his book “The Selfish Gene”, which he wrote and published in 1976. An excerpt of his book states: “Genes are competing directly with their alleles for survival, since their alleles in the gene pool are rivals for their slot on the chromosomes of future generations. Any gene that behaves in such a way as to increase its own survival chances in the gene pool at the expense of its alleles will, by definition, tautologously, tend to survive. The gene is the basic unit of selfishness.” 1

 

Selfish gene, defined

Selfish gene - illustrated by vix maria
Selfish gene has a vital impact on the survival of the species as a whole. [Illustrator: Vix Maria]
 

 

Dawkin defined gene as a piece of chromosome that is sufficiently short to live and function long enough. A gene, he delineates, “functions as a significant unit of natural selection”.1 Based on this notion, genes tend to be selfish in a way that they would compete for their survival. They spread by forming replicas that ought to be passed on across generations. And we, as living beings, are only their vessel and an ephemeral vehicle that conveys them to the next vessel.

 

The genes are the immortals…. They are the replicators and we are the survival machines. When we have served our purpose we are cast aside. But genes are denizens of geological time: genes are forever. – Robert Dawkin1

 

Accordingly, a selfish gene would compete for its seat (loci) on the organism’s genome. Those that efficiently make copies of themselves would likely increase in number and survive in the gene pool whereas those that are less effective in the competition would tend to decrease in number.

 

 

Selfish gene and altruism

In spite of its reputation as egoistic, a selfish gene favours altruism, especially, if the act would help its replicas in other members of its species survive. Many animals – from mere ants to the more intricate humans – display altruism, which refers to a set of acts depicting a seemingly selfless behavior for the benefit or well-being of others. Hence, even if the altruistic act would eventually harm an individual, it would still prove beneficial to a selfish gene since more of its replicas in other members could wind up persisting.

 

 

 

Selfish gene elements

Selfish gene elements (sometimes referred to as selfish DNA) are nucleotide sequences that make copies of itself within the genome. They do not necessarily add up to the reproductive success of or confer significant advantage to the organism. Sometimes, they may even cause harm.

 

Recently, researchers have sequenced for the first time two selfish genes from the fungus Neurospora intermedia. A fungal spore that carries the selfish gene known as the “spore killer” would kill the sibling spores lacking the gene. 2

 

Another example of a selfish gene element is that found by the UCLA researchers in a strain of the roundworm Caenorhabditis elegans. They found a pair of selfish genes, one that encodes for a poison and the other that encodes for its antidote. The offspring that does not inherit the gene for the antidote dies while still an embryo because it fails to protect itself from the poison (toxin) produced by the mother. 3

 

 

 

Implications

These studies on selfish genes implicate that there might be many more of them and are probably just hiding in plain sight. Discovering them could one day lead to important uses. For instance, selfish genes could be used as genetic control that would deter the development of pesky parasites at the molecular level.

 

 

— written by Maria Victoria Gonzaga

 

 

 

References:
1 Dawkins, R. (2016). The Selfish Gene: 40th Anniversary edition (4th ed). Oxford University Press. ISBN 0191093076.
2 Uppsala University. (2018, October 15). Unravelling the genetics of fungal fratricide. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2018/10/181015113524.htm
3 University of California – Los Angeles Health Sciences. (2017, May 11). Study of worms reveals ‘selfish genes’ that encode a toxin, and its antidote: Discovery could suggest new ways to stop the spread of disease. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2017/05/170511141937.htm

Evolutionary History of Endemic Gastropod Assemblage in Lake Malawi

Evolutionary evidence showcases the importance of ancient species that evolved through million years ago and still existed at present time. Environmental changes, geographic movement and plate tectonic changes can affect the evolutionary process of a certain species morphologically for survival. The paper signifies the lineage of certain endemic gastropod species in Lake Malawi. The authors try to trace the evolutionary origin of this particular species predicting that this is an endemic species of the certain lake.

 

Evolutionary history of gastropod species in Lake Malawi

Environmental conditions are one of the contributory factors that affect the morphology of the gastropod Lanistes. Two species are said to be endemic of Malawi Lake these are the Lanistes ovum and Lanistes ellipticus.  Phylogenetic analysis shows that these two species did not cluster to any species found at the vicinity of Lake Malawi. The spatial vicinity of the nearby lakes was also examined for the presence of this gastropod, through morphological analysis. And it shows similarity but not genetically using mitochondrial COI gene as a biomarker.

 

Theoretically, a possible potential transition since at Lake Kazuni at around 50 km from Lake Malawi has Lanistes ovum complexes. Fossil record will always admit the origin of the certain species through time. The authors give importance on lineages as basis for taxonomic purposes and evolutionary processes. In which molecular time is relevant in shifting the morphogenetic properties of a certain species.

 

Indeed, Lake Malawi consists of endemic species to the entire Malawi rift rather than endemic to the lake proper.  It also signifies phylogenetic relationship within genus through parallel evolution.  And provides evidence that gastropod Lanistes species are not restricted in certain area but are present throughout Malawi rift.

 

Source: Prepared by Joan Tura from Proceedings Biology Science 

2009 Aug 7; 276(1668): 2837–2846

 

 

 

Why Non-Human Primates Don’t Speak Like Humans

Summary: Why are non-human primates unable to speak like humans? A widely-accepted theory associated it with their lack of vocal anatomy to produce human-like sounds. This was debunked, though, by recent studies upon recognizing vocal muscles similar to ours. It appears that non-human primates are speech-ready and yet do not speak still the way we do.

 

 

 

Perhaps, you have already seen one of those viral videos of pet dogs that seemingly muttered “I wuv (love) you”. Those dogs seemed to make a garbled speech, but still, they unfailingly fascinated people with their apparent “sweet talking“. Thus, one can truly wonder. If these dogs seem to be able to mutter a few, then, how come our closely-related apes and other primates are unable to do so? Even the more evolutionary-distant bird species, such as parakeets, mockingbirds, cockatoos, and other parrots possess the skills to mimic human language and yet our closely-related non-human primates were limited to merely grunts and hoots.

Non-human primates are believed to have no ability to speak or mimic human vocal sounds because of their vocal anatomy. However, a recent study debunked this widely-known theory.

 

 

 

Is it because of the non-human primates’ lack of vocal anatomy?

Why non-human primates are unable to speak has long been blamed on their vocal anatomy. A long-held theory explicates that monkeys and apes are incapable of, at least, imitating human speech sounds because their vocal tract is not that intricately flexible. In a paper published in “Science” in 1969, Philip H. Lieberman and others posited that non-human primates, particularly Rhesus (or macaque) monkeys (Macaca mulatta), were unable to speak like us because of vocal tract limitations. They went as far as to say that the ability for speech as we know it is a “… linguistic endowment …” exclusive to humans.1

A recent study debunked this widely-known theory. In the article, Muscles of the Apes, it referred to the study published in Frontiers in Ecology and Evolution wherein their findings refuted such long-held theory about apes lacking the muscles associated with the vocal communication (as well as bipedalism and facial expressions). These muscles were thought of as exclusive to humans. However, with the availability of more specimens to work on to, they found that certain apes did possess these muscles yet they did not put them to use as humans did. Apparently, the apes were likely speech-ready because they, too, possess the anatomy essential for generating human speech sounds.

 

 

 

Is it because of the non-human primates’ lack of exposure to humans?

Is human language nature- or nurture-driven? We are aware that our language is something that we learned and acquired as we grow. Perhaps, primates would be able to acquire it as well if they could be exposed profoundly to it, thus, came the Project Nim in 1973.

Project Nim was a controversial research. It was a Columbia University psychology experiment on a chimpanzee, named Nim Chimpsky. He was taken as a child from the wild to be raised in a common human household. The research aimed to see if the chimp would be able to acquire human-like behavior and language through nurture. The chimp did learn to convey through sign language but was not successful at speaking even a single word.2

 

 

 

Is it because of the non-human primate’s lack of the necessary brain wiring?

Another theory surfaces to explain why non-human primates are incapable of human speech and it has to do with brain wiring. Accordingly, while non-human primates (particularly, macaques) appear to be well equipped with a speech-ready vocal tract, they do not have the adequate brain wiring that regulates the vocal tract muscles to generate human-like speech sounds. They seem to lack the proper neural control on muscles on their vocal tract and as such are not able to configure them for speech.3

It is also postulated that there might be a molecular predisposition involved, for instance, the FOXP2 (forkhead box protein 2) gene.4 FOXP2 was the first gene identified to play a role in human speech and language development, thus, was called the “language gene“. It is located in chromosome 7 and is expressed in certain cells, including the brain. Mutation of this gene causes speech and language disorder in humans.

Non-human primates do not have the gift for human-like speech because they probably do not need one. Based on recent findings, they have the anatomical features similar to ours yet they produce vocal sounds different from ours. They do have a communication prowess that they use amongst them. It may be far different from ours but it is just as remarkable. Nevertheless, exploring the intricacies of language development could help us learn more about how humans diverged from our non-primate relatives and eventually acquired one of our own.

 

 

— written by Maria Victoria Gonzaga

 

 

 

References:
1 Lieberman, P. H., Klatt, D. H., & Wilson, W. H. (1969). Vocal Tract Limitations on the Vowel Repertoires of Rhesus Monkey and other Nonhuman Primates. Science 164: 1185-1187. Retrieved from
http://www.haskins.yale.edu/Reprints/HL0080.pdf
2 ‘Project Nim’: A Chimp’s Very Human, Very Sad Life. (2011). National Public Radio, Inc. Retrieved from https://www.npr.org/2011/07/20/138467156/project-nim-a-chimps-very-human-very-sad-life
3 Fitch, W. T., de Boer, B., Mathur, N., & Ghazanfar, A. A. (2016). Monkey vocal tracts are speech-ready. ScienceAdvances. Retrieved from http://advances.sciencemag.org/content/2/12/e1600723.full
4 Conger, C. (n.d.).Can chimpanzees learn human language? HowStuffWorks. Retrieved from https://animals.howstuffworks.com/mammals/chimps-learn-language.htm

Prokaryotic Ancestor of Mitochondria: on the hunt

The alphaproteobacteria have been widely cited as the closest relative– and possibly the prokaryotic ancestor — of the powerhouse of the eukaryotic cell, mitochondria. A team of researchers from Uppsala University in Sweden aimed to identify its prokaryotic ancestral origin. However, their recent findings seemed to contradict this notion.1 The mitochondria may have taken an evolutionary fate that is quite different from the one previously thought. Debates on the endosymbiotic theory remain fierce.

 

 

 

Mitochondria, the cell’s powerhouse

The mitochondrion and its small circular chromosome, mitochondrial DNA.
(Credit by Darryl Leja, NHGRI)

 

The mitochondria are best known as the powerhouse of eukaryotic cells. Through cellular respiration, the mitochondrion (single form of the plural, mitochondria) is the organelle responsible for generating and supplying energy (e.g. adenosine triphosphate) needed in various metabolic activities of the cell. It is semi-autonomous as it has its own genome. Referred to as mitochondrial DNA, the genetic material contained in the mitochondrion enables the manufacturing of its own RNAs and proteins. The genome of the mitochondrion is distinct from the nuclear genome and this paved the idea that this organelle is possibly derived from a prokaryote through endosymbiosis (endosymbiotic theory).

 

 

 

Mitochondria and the endosymbiotic theory

An endosymbiosis is a form of symbiosis wherein the endosymbiont lives within the body of its host. In terms of evolution, endosymbiosis was used as a basis of the origin of semi-autonomic organelles, such as mitochondria. Referred to as the Endosymbiotic theory, this theory suggests that mitochondria within the eukaryotic cell came about as a result of early endosymbiosis between prokaryotic endosymbionts and the eukaryotic host cell. The proponents of this theory posited that the mitochondria arose from the prokaryotes (particularly, alphaproteobacteria). One of the proofs raised is based upon the ability of the mitochondria to reproduce via a process similar to the prokaryotic binary fission. Another is the mitochondrial DNA being more akin to the prokaryotic genome (as a single circular DNA) than the nuclear genome.2

 

 

 

Ancestral endosymbiont of the mitochondria

To lay further evidence to the endosymbiotic theory, the research team from Uppsala University in Sweden aimed to uncover the identity of the mitochondrial ancestor. They analyzed large amounts of environmental sequencing data from the Pacific and the Atlantic Ocean and found several species that had not yet been identified. They were able to reconstruct the genomes of over 40 alphaproteobacteria.1 These bacteria include the Rickettsiales group, which is commonly cited as the closest relative among other alphaproteobacteria based on genomic studies 3, and possibly where the mitochondria originated from. Also, the Rickettsiales is a group of parasitic prokaryotes. As such, they depend highly on their host cell to survive. However, the Uppsala University research team was unable to pinpoint the mitochondrial ancestor from their recent analyses on the present-day alphaproteobacteria, including Rickettsiales. And based on what their current data suggest, the evolutionary position of the mitochondria would lie outside of the alphaproteobacteria. This means that this group is not the closest relative, and the ancestor from where the mitochondria evolved could have also given rise to the presently-identified alphaproteobacteria.1

 

 

 

Laying a firm basis for the endosymbiotic theory remains a challenging feat at this time. Nevertheless, we cannot simply rest the case just because the new data said otherwise. Researchers should not be disheartened in finding more decisive and fully comprehensive evidence as to the ancestral origin of the mitochondria. Reaching a consensus may still be far off. However, a disparity in evidence-based viewpoints is better than a clash of unfounded words.

 

 

— written by Maria Victoria Gonzaga

 

 

 

References:
1 Uppsala University. (2018, April 25). “Redefining the origin of the cellular powerhouse”. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2018/04/180425131841.htm
2 “Endosymbiotic theory”. (n.d.). Biology-Online.org. Retrieved from https://biology-online.org/dictionary/Endosymbiotic_theory
3 Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz-Pontén, T., Alsmark, U. C., Podowski, R. M., Näslund, A. K., Eriksson, A. S., Winkler, H. H., and Kurland, C. G. (1998). “The genome sequence of Rickettsia prowazekii and the origin of mitochondria”. Nature 396 (6707): 133–140. doi:10.1038/24094

Men could go extinct? Y chromosome is slowly disappearing

Hold on to your seats, gentlemen — the male chromosome (Y chromosome) is slowly disappearing at a relatively fast rate and it might be gone completely in the future. This presumption is based on the genetic studies on the Y chromosome. It used to be genetically the same as the X chromosome. However, it has degenerated gradually, and now, it shriveled and became less relevant.

 

 

 

Y chromosome as male-determiner

Y Chromosome and DNA illustration. (Credit: Archaeogenetics, distributed by CC BY-SA 3.0 license)

 

Humans have two types of sex chromosomes: the X chromosome and the Y chromosome. Females have two X chromosomes whereas males have only one. Nonetheless, males have the Y chromosome that is passed on across generations from fathers to sons. In the XX/XY sex-determination system, the Y chromosome is the male-determining sex chromosome. Previously, the X chromosome was regarded as the sex-determiner. This conjecture, however, was eventually proven wrong when the SRY (sex-determining region Y) gene was identified on the male chromosome.1 This gene codes for the testis-determining factor, a protein that triggers testis development. Without this gene, testis fails to develop in males. There are few other genes present on the Y chromosome. However, compared with the X chromosome, the Y chromosome is relatively gene poor and the only highly notable gene on it is the SRY gene.

 

 

 

The disappearing Y chromosome debate

Going back in time, about 166 million years ago, the first mammals had a Y chromosome (called a proto-Y chromosome) that was genetically similar to and of the same size as the X chromosome.2 However, the male chromosome diminished into the short Y chromosome that it is now. The Y chromosome degenerates as it loses genes through time. Unlike the other chromosomes, the Y chromosome does not undergo genetic recombination. Based on the current speed of degeneration, the Y chromosome would likely have 4.6 million years left, which relatively speaking is not that long, considering the 3.5 billion years that life has existed on Earth.2 Some mammals, such as certain rodent species, have already lost their entire Y chromosome. 3 Some experts (referred to as the “leavers”) infer that this event would also happen to humans in the future. This notion was opposed by others (the “remainers”) who believe that the Y chromosome would not disappear completely because it has evolved corrective mechanisms that slow down and deter gene loss. Gene amplification (the acquisition of multiple gene copies) and the presence of palindromes (a sequence that reads the same, whether backward or forward, e.g. AGTGA) help mitigate gene loss.3

 

 

 

Men without Y chromosome in the future

Will men be extinct in the future?

 

If the Y chromosome ultimately disappears in the future, what will happen to men? Will there be men in the future? Experts believe that men will get by when that time comes. Men would still be around just as women have been perfectly fine without the Y chromosome. As for the SRY gene, it could move to a different chromosome. Nonetheless, the chromosome that would take this gene would be at risk of going through the same fate as that of the Y chromosome.3 The absence of SRY gene on the male chromosome is not new, however. In Swyer syndrome, the individual has a Y chromosome lacking the SRY gene and consequently fails to develop testis and other internal male organs. A person with this genetic condition is outwardly female but with a karyotype of a male (i.e. XY karyotype) .2

 

 

 

Further research on the degenerating male chromosome is essential to monitor the rate of gene loss on Y chromosome. One possible implication of the possible complete disappearance of Y chromosome is the impending necessity for more advanced reproductive modalities that can be applied artificially not just on humans but also on other mammals as reproduction by that time would ever hardly become natural.

 

 

 

— written by Maria Victoria Gonzaga

 

 

 

References:
1 “Y chromosome”. (n.d.). Biology-Online.org Dictionary. Retrieved from [https://biology-online.org/dictionary/Y_chromosome].
2 Griffin, D. & Ellis, P. (2018). The Y chromosome is disappearing – so what will happen to men?
Retrieved from https://theconversation.com/the-y-chromosome-is-disappearing-so-what-will-happen-to-men-90125
3 Griffin, D.K. Is the Y chromosome disappearing?—Both sides of the argument. Chromosome Res (2012) 20: 35. https://doi.org/10.1007/s10577-011-9252-1