Biology Online is a Biology blog and dictionary site that provides up to date articles on the latest developments in biological science. The Biology Online Dictionary is a completely free and open dictionary with over 60,000 biology terms. It uses the wiki concept, so that anyone can make a contribution.

Author: Joan Tura

Antibiotics removal by walnut shell based activated carbon

Antibiotics are the most common compounds that are found in groundwater, surface water, drinking water and wastewater. Also, traces of these antibiotics found in sewage sludge, soil and sediments that caused concern to the environment. Besides, the emergence of antimicrobial resistance becomes the major health problem worldwide. Nonetheless, therapeutic used of antimicrobials in human and veterinary medicine contributes to the widespread of resistant microorganisms. On the other hand walnut shells are among the waste materials that have been suggested to have efficient sorbent alternatives. Due to its low ash content and been used as low cost sorbent for metal and oil removal.

Walnut shell activated carbon in removal of antibiotic

Advance treatment of wastewater confirming the positive results in lowering the presence of antibiotic residues. These include ozonation, membrane separation, advanced oxidation, reverse osmosis and nanofiltration. In which, the vast applicability of activated carbon in pollutants removal are always dependent on the conditions of raw materials. So, this particular research, the walnut shell has been used since it is a precursor material for activated carbon production. Moreover, the activated carbons ability to remove organic micro-pollutants lies on the solution and contaminants properties. Apparently, the absorption of antibiotic Metronidazole shows the conditions that maximize expected results.

 

The influence of temperature on the absorption capacity of  antibiotic is slightly significant. As a result, the absorption capacity depends on the nature of the activated carbon and its chemical characteristics, morphology and solutes. Also, the nature of solutes affecting electronic density influences the interactions with the matrix of the absorbent. In addition, activated carbon is the most common process to remove dissolved organic and inorganic compounds. Its great flexibility in applications arises from physical and chemical properties on specifically treated carbon materials.

 

As a result, the absorption amount of organic compounds depends strongly on essential properties of the absorbent. However, it can be slightly affected by some variables like temperature, pH, ionic strength and contact time. Therefore, antibiotic shows positive effect on the interaction of the absorbed amount. So, activated carbon from walnut shell might represent a good agent in removing antibiotic residues.

 

Sources: Prepared by Joan Tura from ScienceDirect: Science of the Total Environment

Volume 646, 1 January 2019 Pages 168-176

Aerobic exercise modifies fine particle exposures to young adults

Aerobic exercise contributes to the prevention and treatment of various chronic diseases as well as helps improves endothelial function. It is also beneficial in adaptation of the cardio-pulmonary system and infection resistant. Moreover, aerobic exercise attributes to the release of vasoconstrictor substances and increased nitric oxide availability. However, exposure to fine particles in ambient condition linked to some adverse health effects. This includes oxidative stress, pulmonary systemic inflammation, increased blood coagulation and vascular imbalance. Aerobic exercise in polluted environments increased inhalation of air pollutants due to increased respiratory rate and reduction of nasal resistance. Also, long-term exercise aggravates air pollutant which causes associated respiratory impairment.

 

Air pollutant exposure during aerobic exercise

There were 20 healthy non-smoking male subjects on this study and aerobic exercise frequencies have been recorded. Wherein indices measured including fractional exhaled nitric oxide, blood pressures; cytokines exhaled breath condensate and pulse-wave analysis. However, the biomarkers of eosinophilic airway inflammation were positively associated with air pollution exposure. Also, the fractional exhaled nitric oxide concentrations were greater in high exercise frequency. Thus, explain that high strength exercise might be at higher risk of particle-mediated respiratory symptoms.

 

Aerobic exercise is associated with the exposure to air pollutant which caused respiratory inflammation and arterial stiffness. In terms of cardiovascular responses the increased in aortic augmentation pressure indicate higher pulse-wave velocity. Furthermore, aerobic exercise at moderate frequency had a greater protective effect against cardiopulmonary health risk than low or excessive exercise.

 

Therefore, long-term habitual aerobic exercise in severely polluted areas may strengthen the resistance of the cardiovascular system. But increase the risk of pollutant-related airway inflammation. In addition, surrogate biomarkers of atherosclerosis, arterial wall thickness have been decreased following the long-term aerobic exercise. And also low cardiopulmonary fitness is the key indicators for cardiovascular mortality and coronary heart disease.

 

Source: Prepared by Joan Tura from BMC Environmental Health

Volume 17:88 December 13, 2018

Seagrasses biomass-density relationship and ecological indicator

Seagrasses are marine flowering plant that comprises more than 60 different species. It grows by rhizome extension forming like grassland. Seagrasses also photosynthesize in submerged photic zone that mostly occur in shallow coastal water. In productive ecosystem seagrasses beds are diverse that can accommodate hundreds of associated species like fishes, macroalgae, mollusks and nematodes. However, biomass-density relationship becomes the center of research that describes the health of seagrass meadows.  Concurrently, biomass-density upper boundaries determined the maximum efficiency of space occupation. In which each distance reflects effective competence in packing biomass which proved as reliable ecological indicators.

 

Biomass-Density of Seagrasses

The researchers gathered 32 studies on 10 seagrasses species distributed worldwide reveals that seagrasses are limited by boundary line. Upon using the applied metric system on this particular research each stand of seagrass distance are perpendicular to the boundary.  However, seagrasses shows poor occupier of space compared to terrestrial plants and algae wherein less volume exploited per unit stand surface. Due to some reasons such as short shoot heights, wasted volume due to internodes length larger than shoot widths.

 

Seagrass comprises different species which shows diverse efficiency in space occupation. However, it occupies different bands of biomass-shoot density signifying conditional differentiation of co-occurring seagrass species. Furthermore, high shoot density dominates in favorable environments compare to harsh environment. As a result, this space occupation revealed as a good tool in understanding aspects of seagrasses ecology. Therefore, it serves as the basis to review fundamental aspects including clonal growth pattern, seasonality, competition and depth distribution.

 

Biomass-density of seagrass meadows is limited by interspecific boundary line making a maximum efficiency of space occupation. Though, species tends to differentiate the bands each scatter plot showing conditional differentiation. Moreover, during summer it shows the most favorable season and lower intertidal in correspond to depth. Therefore, the competence of space occupation requires biomass and shoots density of stands measured by vertical distance to the seagrasses.

 

Source: Prepared by Joan Tura from BMC Ecology

Volume 18: 24, October 19, 2018

Black-legged Kittiwakes: Sperm collection, characterization and morphology

Blacked-legged Kittiwakes are pelagic gulls that often feed on fish and macro-zooplankton at the ocean surface. They breed in colonies ranging from few to thousands of pairs which prominently observed in their open, sea-cliff nesting habitats. Blacked-legged Kittiwakes are the most popular models for research because they can be easily monitored and captured. They also considered as prime indicators of fluctuating conditions in marine ecosystem. The purpose of this research is to collect live sperm of blacked-legged Kittiwakes using a non-invasive method. Also, be able to provide information on suitable extenders and timing in relations to the breeding phenology. Additionally, it will offer informations to different disciplines including veterinary science, conservation biology, ecotoxicology and evolutionary biology.

 

Sperm collection of Blacked-legged Kittiwakes

Sperm of blacked-legged Kittiwakes were obtained by firmly massaging the lower back and the tail base of the male bird. Since, the researchers observed that during mating the male tend to wag their tails thus, releasing the sperm naturally. After massaging the handler lift the tail, clear the feathers around cloaca and gently squeeze the cloacal area. While doing this a capillary tube placed on the top of the cloaca to collect directly the translucent liquid. Then, verified directly to the laboratory under the microscope.

 

The result demonstrates a successful collection of live sperm under field condition of blacked-legged Kittiwakes for the first time. In which the researchers discovered two extenders suitable for maintaining the sperm however, undiluted sperm also performed well in terms of survival. Since, seminal fluids alone are sufficient enough to maintain the sperm alive. Though, the researchers still recommend using sperm extenders since it is necessary to dilute highly concentrated ejaculates. Also, extenders are necessary on sperm quality examination when comparing experimental groups and sperm production.

 

Blacked-legged Kittiwakes are strictly monogamous and stores semen inside their body unlike passerine birds that stores semen in seminal glomera. Interestingly, one has to keep in mind that sperm quality may vary seasonally. So, the researchers suggest that one should statistically account for this effects using date relative to laying eggs. Also the researchers recommends to target specific time window when the birds are about to copulate but not after copulation within a day.

 

Source: Prepared by Joan Tura from BMC Avian Research

Volume 9:24, 14 July 2018

Reproductive Success of Medicago sativa: Pollen and Resource limitation

Medicago sativa is a perennial flowering plants that belongs to a legume family.  This plant is known in forage crop, grazing, silage, green manure and cover crop.  Medicago sativa develops potential for medicinal uses and thrive mostly in an arid climate. The aim of this particular research is to determine the floral traits and pollinators visitation activities that affect pollen limitations. It also identifies possible effects of resource allocation on pollen supplementation and the impacts of pollen on flower opening.

 

Medicago sativa floral traits and pollinators

Plant reproduction is limited due to pollen resources, floral traits and pollinator activities. Medicago sativa was observed at about 120 hours by collecting pollens and nectars. The pollinator type was then noted. It was then recorded the visitation frequency and behavior of flowers based on insects as effective pollinators or occasional pollinators. The pollinators then, captured using insect nets to find out the presence of pollen grains.

 

The result shows a positive relationship between pollinators visitation frequency and the number of open flowers. It also found out that, it is more efficient for pollinators to visits opening flowers. Since, filaments of Medicago sativa will dry easily particularly in an arid regions. Moreover, flowers of Medicago sativa was completely open and the pollen released between 09:00 to 14:00 hours. Additionally, some insects identified as effective pollinators because it can collect more pollen and visit more often. However, a reduction of pollinators will decline the amount of pollens and reduced the probability of cross pollen transfer.

 

Overall, this research found out that pollen resources is the limiting factor for the reproductive success of Medicago sativa. It also shows that resource reallocation can increase pollen limitation and plants might reallocate among flowers. However, insufficient pollen deposition is typically caused by pollinators assemblage, visitation and abundance.  In which flowers is the main effects of resource limitations and pollinators plays an important role in outcrossing.

 

Source: Prepared by Joan Tura from BMC Ecology

Volume 18:28 August 29, 2018

 

 

 

 

 

 

 

 

 

 

Longest recorded trans-Pacific migration of a whale shark

Whale shark is a slow moving carpet shark and known as the largest extant fish species. It has a very huge mouth yet it feeds almost exclusively on plankton and small fishes. In marine biodiversity records whale shark showed the longest migratory path. Migratory behavior of marine species has been subject for research studies since it is important for optimizing growth and foraging opportunities. It also caters the breeding ground at discrete geographical locations and identification of different habitats across several jurisdictions. Also, it serves as the key for spatial planning and international policy management for ecosystem resources. Furthermore, gene flow, connectivity and population status are essentials for the marine conservation especially for migratory species.

 

Whale shark Migratory Route

On September 16, 2011 three female whale shark were tag using satellite transmitter model SPOT 253C. The tag specifies battery life wherein transmission occurs only when the animal is swimming near surface to maximize battery life. One female whale shark named Anne remained in Panamanian waters for 116 days then to eastern Pacific for 226 days. Then transmission began again at Hawaii after 235 days of silence then continued to Marshall Islands for about 268 days. But then transmission were interrupted again when the Anne reach the Mariana Trench.

 

So, the whale shark Anne travelled a long distance of 20,142 km approximately from Panama to Mariana Trench. Throughout this period Anne spent the entire time above thermocline with a temperature ranging from 15.1–35 °C. The route taken by Anne followed primarily westward North Equatorial Current similar to other whale that has been tracked previously. These results show that long periods without transmission do not necessarily entails tag shedding. Thus, this unusual long distance travelled of Anne and the intervals between detection offers evidence both tracking and genetic studies. It also suggests that whale shark is capable of long-distance travel.

 

Whale shark can migrate from Eastern Pacific to Western Indo-Pacific connecting two ocean basin using North Equatorial Current. It also imply that a potential passageway to reach Philippine Sea into South China Sea to get to Indian Ocean. Moreover, the results of this record are consistent to the genetic studies showing potential dispersal of whale shark. Overall, these two tracks showed by Anne expose the complexity of management of endangered species crossing multiple jurisdictions. Yet, the protection and conservation programs focused only at the local level rather than across Pacific.

 

Source: Prepared by Joan Tura from BMC Marine Biodiversity Records

Volume 11:8, April 19, 2018

Porphyromonas gingivalis: Periodontitis bacterium induces memory impairment and neuroinflammation

Porphyromonas gingivalis is a bacterium commonly associated in periodontitis a chronic inflammatory disease in the oral cavity.  Periodontium is composed of periodontal ligament, cementum, alveolar bone and gingiva. Porphyromonas gingivalis is a gram-negative bacterium that contains toxic components. It is characterized by the presence of edema and destruction of tissue supporting the teeth. In which periodontal bacteria enters into circulation that leads to bacteremia and system dissemination of bacterial products. Moreover, Porphyromonas gingivalis can promotes systemic effects through expression of inflammatory mediators like pro-inflammatory cytokines. As a consequence it is confirmed to be associated with systemic diseases such as diabetes, respiratory disease and cardiovascular disease.

Potential effects of Porphyromonas gingivalis

Neurodegenerative diseases have been recognized as the major cause of cognitive and behavioral damage. It is known that peripheral infections could activate microglial cells within the nervous system enhancing development of neurodegeneration. Thus, the inflammatory molecules in the brain could be enhanced by periodontitis that increase inflammatory levels promoting the development of Alzheimer’s disease. In this particular research Porphyromonas gingivalis infection may impair cognition by elevating expression of pro-inflammatory cytokines. It is also shown that the infected mice displayed impaired memory and learning abilities. Elevated levels of pro-inflammatory mediators in the blood can lead to direct or indirect transport to the brain.

 

Periodontal infection caused by Porphyromonas gingivalis promotes neuro-inflammatory response via releasing pro-inflammatory cytokines. In which inflammation induces alterations in neurovascular functions causing increased in blood brain barrier permeability and aggregation of toxins. In brain trauma, infection and presence of endogenic abnormal protein aggregates can activate secretions of TNF-α. That plays a pivotal role in the development and functions of central nervous system. Moreover, aging is also associated to chronic inflammation which exerts additional stress to the brain nerve cells. Additionally, during systemic inflammation the functions of the blood-cerebrospinal fluid barrier were also significantly affected.

 

Therefore, Porphyromonas gingivalis periodontal infection may induce age-dependent brain inflammation. Also periodontitis can cause memory impairment which has a similar effect on the development of Alzheimer’s disease. Furthermore, aging is the major risk factor of Alzheimer’s disease and is correlated with elevated glial responsiveness. And in due course might increase the brain’s susceptibility to injury and disease.

 

Source: Prepared by Joan Tura from BMC Immunity and Aging

Volume 15:6, January 30, 2018

 

Nutrients and bioactive potentials of green and red seaweeds

Seaweeds are macroscopic multicellular algae that have been used as food since ancient time. It was originated in Japan and then China particularly to the people who lived near the coastal areas. In addition to its nutritional value, seaweeds are rich source of structurally diverse bioactive compounds including polysaccharides, phlorotannins and pigments. Because of this, the demand  increases in the global trade wherein Korea is the major producers. In traditional Korean cuisines seaweeds used as soup, snack, pickle, vegetable and salad. Hence, this present research focuses on the edible green and red seaweeds found in Korea.

 

Green and Red Seaweeds Bioactive Compounds

Green seaweeds used to treat stomach disorders and hangovers because it contains 55% polysaccharides, 30% proteins, 13% ash and 1% lipids. It also have micro mineral such as calcium, manganese, iron, selenium, sodium, phosphate and potassium. Additionally, green seaweeds also used to treat wastewater and have significant medicinal value for rheumatism, high blood pressure and diabetes. In recent findings it has potentials bioactive properties to treat cancers and diabetes mellitus. Also it contains essentials oil to inhibit foodborne pathogens, anti-inflammatory, antioxidant and blood lipid reduction. Moreover, it has been used in traditional medicine for sunstroke, urinary diseases and hyperlipidemia. It is also useful to reduce eutrophication in mariculture waters that helps the survival rate productivity of shrimps and prawns.

 

Red seaweeds are the main source of hydrocolloids and contain vitamins A, B and C. It is also a rich source of carbohydrates particularly galactose and glucose. These red seaweeds are popularly known in agar production. And used as a raw material in bio-ethanol industry due to its high level of ethanol extraction efficiency. Likewise, both red and green seaweeds contain antioxidants properties due to its hydroxyl radical scavenging activity. That is responsible for neuro-protection against oxidative stress. In all, seaweeds have potential properties for anticancer, anti-diabetic, anti-obesity, anti-inflammatory, antimicrobial and anti-coagulant.

 

Therefore, seaweeds are vital source of food and medicine on different applications. The presences of secondary metabolites are potential to develop as functional materials due to its promising bioactive properties. Korea is one of the biggest consumers and producers wherein people mostly incorporate seaweeds on daily diets. This research suggests that increase consumption offers healthy benefits as well as utilization of seaweed materials as functional ingredients.

 

Source: Prepared by Joan Tura from  BMC Fisheries and Aquatic Sciences

Volume 21:19, 6 April 2018

 

Ecosystem carbon emissions from forest fires in Alaska

Carbon emissions in Alaska relied on measurements of trees and changes in surface organic layer carbon pools after large-scale burning. In 2015 hundreds of forest fires burned across the state of Alaska resulted as second highest acreage burned in a year.  Nearly 300 forest fires occur in a week, as a result over 61,000 lightning strikes detected during this period. As of mid-September a total of 2.1 million hectares has been burned statewide in 700 separate forest fires. Deeper burning of surface layers happened during fires and on more well-drained sites at moderate to high severity levels. Summer of 2015 in Alaska has an exceptionally warm and dry condition following the largest forest fires recorded in decade.

 

Forest fires estimated carbon emission

Estimated burned depth from forest fires consumed almost the surface organic moss layers at about 5cm-10cm depth. This estimate confirmed using the relationship of every centimeter of organic mat thickness and soil temperature under organic layer. In sternly burned forest a total consumption of living moss organic layer is directly associated with warming at the soil surface layer. Additionally, soil temperature at about 30cm depth has 8–10 °C higher compared to unburned forest sites. Therefore, forest fire impacts on forested areas caused a fivefold decrease in surface organic layer thickness. As well as doubling of water storage in the soil layer, doubling in thaw depth and increase soil temperature.

 

Moreover, carbon emissions include the measurement above ground biomass and changes in surface organic layer carbon pools. In 2017 field surveys of Tanana, Alaska shows no live surface organic layers remained from 2015 forest fires. Due to these intense fires only residual dead, charred moss and lichen left behind that could not insulate soil layers. Also, post-fire thickness of organic layer and thermal conductivity are important factors to determine soil temperature and thaw depth. Nevertheless, the role of mineral to the total ecosystem carbon emissions is higher in forests that are normally calculated.

 

Forest fires have overall percentage of more than 60% in interior Alaska. And this abrupt removal of moss and soil organic layer elevates post-fire soil temperatures and thaw depths. Because of this a massive loss of carbon and nitrogen from soil layer minerals. As well as, a much warmer and wetter surface layer compared to unburned forest nearby. Therefore, carbon emissions are due to the addition of mass wasting of soil mineral in 2 years following forest fires.

 

Source: Prepared by Joan Tura from  BMC Carbon Balance and Management

Volume 13:2 January 8, 2018

Colon cancer : Independent prognostic genes and mechanisms

Colon Cancer is the third most deadly cancer worldwide. There were more than 1.4 million cases each year and 694,000 deaths globally. The treatment of colon cancer includes chemotherapy, surgery and radiation therapy. However, advances in diagnosis and treatment leads to development and improvement in survival. Numerous data point out that genetic changes function as vital role in the development of colon and rectal cancer. In which regulatory molecules mRNA affects various molecular and cellular target including cancer cells. That is why, development in research used mRNA as based diagnostic biomarkers for colon cancer in human. Furthermore, certain kind of mRNA used to predict survival in colon cancer patients. As well as a better knowledge of molecular mechanisms and associated gene is important for early diagnosis and treatment.

 

ULBP2 a novel prognostic biomarker in Colon Cancer

ULBP2 is a potential biomarker in colon cancer survival. Previous study shows that matrix metalloproteinase-9 reveals as an important marker for postoperative prognosis in colorectal cancer patients. Also extracellular matrix plays a vital role in cancer progression in which it provides structural and biochemical support in cells.  Despite from all of these, digestion is also considered to have a major role related to cancer preventive activity. Additionally, an in vitro of peptides gastrointestinal digestion can inhibit colon cancer cells proliferation and inflammation. Moreover, recent study showed that up and down regulated mRNAs are largely amass in extracellular matrix and digestion. As a result, it would entails that abnormality of extracellular matrix and digestion takes part in colon cancer progression.

 

Furthermore, the Wnt signaling pathway gives clinical importance on various diseases including colon cancer. Since alteration of this pathway are mostly observed in colorectal cancer with microsatellite instability. So, inhibiting this pathway might be helpful strategy for targeting chemotherapy-resistance cells. Also drug metabolism determined resistance of colorectal cancer resorcinol-based heat shock protein 90 inhibitors. Therefore, Wnt signaling and drug metabolism are both important pathway enriched by up and down regulated mRNAs.

 

Prognostic biomarkers are very important and have the power to change the course of disease if only knew beyond prognostic factors. In this research ULBP2 gene that encodes cell surface glycoprotein located at chromosome 6 demonstrates prognostic biomarker for colon cancer. High level of ULBP2 is deemed independent indicator for overall survival and identified as the sole outstanding mRNA.

 

Source: Prepared by Joan Tura from BMC Biological Research

Volume 51:10 March 29, 2018